A rationale of the Baeyer-Villiger oxidation of cyclohexanone to ε-caprolactone with hydrogen peroxide: unprecedented evidence for a radical mechanism controlling reactivity.

نویسندگان

  • Fabrizio Cavani
  • Katerina Raabova
  • Franca Bigi
  • Carla Quarantelli
چکیده

We demonstrate, for the first time, in the Baeyer-Villiger oxidation of cyclohexanone with aqueous hydrogen peroxide under conditions aimed at obtaining ε-caprolactone, that a thermally activated radical reaction leads to the concurrent formation of adipic acid, even when a stoichiometric amount of the oxidant is used. In fact, ε-caprolactone is the primary reaction product, but it is more reactive than cyclohexanone, and quickly undergoes consecutive transformations. When titanium silicalite-1 (TS-1) is used as a catalyst, the high concentration of hydroxy radicals within its pores accelerates the reaction rates, and the consecutive formation of adipic acid (and of lighter diacids as well) becomes largely kinetically preferred. The proper choice of the solvent, which also may act as a radical scavenger, both without catalyst and with TS-1, is a powerful tool for controlling the rates of the various reactions involved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Continuous Production of Biorenewable, Polymer‐Grade Lactone Monomers through Sn‐β‐Catalyzed Baeyer–Villiger Oxidation with H2O2

The Baeyer-Villiger oxidation is a key transformation for sustainable chemical synthesis, especially when H2 O2 and solid materials are employed as oxidant and catalyst, respectively. 4-substituted cycloketones, which are readily available from renewables, present excellent platforms for Baeyer-Villiger upgrading. Such substrates exhibit substantially higher levels of activity and produce lacto...

متن کامل

Selective nickel-catalyzed conversion of model and lignin-derived phenolic compounds to cyclohexanone-based polymer building blocks.

Valorization of lignin is essential for the economics of future lignocellulosic biorefineries. Lignin is converted into novel polymer building blocks through four steps: catalytic hydroprocessing of softwood to form 4-alkylguaiacols, their conversion into 4-alkylcyclohexanols, followed by dehydrogenation to form cyclohexanones, and Baeyer-Villiger oxidation to give caprolactones. The formation ...

متن کامل

Zr[bis(salicylidene)ethylenediaminato]-mediated Baeyer-Villiger oxidation: stereospecific synthesis of abnormal and normal lactones.

Baeyer-Villiger oxidation of racemic bicyclic cyclobutanones with Zr[bis(salicylidene)ethylenediaminato] (salen) complex 1 as catalyst in the presence of a urea-hydrogen peroxide adduct was found to proceed enantiospecifically. The enantiotopos selection in the oxidation was governed primarily by the Zr(salen) catalyst, although migratory aptitude (methine > methylene > methyl) in Baeyer-Villig...

متن کامل

The Substrate-Bound Crystal Structure of a Baeyer–Villiger Monooxygenase Exhibits a Criegee-like Conformation

The Baeyer-Villiger monooxygenases (BVMOs) are a family of bacterial flavoproteins that catalyze the synthetically useful Baeyer-Villiger oxidation reaction. This involves the conversion of ketones into esters or cyclic ketones into lactones by introducing an oxygen atom adjacent to the carbonyl group. The BVMOs offer exquisite regio- and enantiospecificity while acting on a wide range of subst...

متن کامل

Quantum mechanical/molecular mechanical study on the enantioselectivity of the enzymatic Baeyer-Villiger reaction of 4-hydroxycyclohexanone.

We report a combined quantum mechanical/molecular mechanical (QM/MM) study of the effect of mutations of the Phe434 residue in the active site of cyclohexanone monooxygenase (CHMO) on its enantioselectivity toward 4-hydroxycyclohexanone. In terms of our previously established model of the enzymatic Baeyer-Villiger reaction, enantioselectivity is governed by the preference toward the equatorial ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Chemistry

دوره 16 43  شماره 

صفحات  -

تاریخ انتشار 2010